Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 793
Filtrar
1.
Nature ; 619(7970): 595-605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468587

RESUMO

Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.


Assuntos
Troca Materno-Fetal , Trofoblastos , Útero , Feminino , Humanos , Gravidez , Artérias/fisiologia , Decídua/irrigação sanguínea , Decídua/citologia , Decídua/imunologia , Decídua/fisiologia , Primeiro Trimestre da Gravidez/genética , Primeiro Trimestre da Gravidez/metabolismo , Primeiro Trimestre da Gravidez/fisiologia , Trofoblastos/citologia , Trofoblastos/imunologia , Trofoblastos/fisiologia , Útero/irrigação sanguínea , Útero/citologia , Útero/imunologia , Útero/fisiologia , Troca Materno-Fetal/genética , Troca Materno-Fetal/imunologia , Troca Materno-Fetal/fisiologia , Fatores de Tempo , Proteômica , Perfilação da Expressão Gênica , Conjuntos de Dados como Assunto , Idade Gestacional
2.
Cell Biol Toxicol ; 39(3): 1077-1098, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34773530

RESUMO

Uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects. Recent advances in molecular technologies have allowed the unprecedented mapping of epigenetic modifications during embryo implantation. DNA methyltransferase 3a (DNMT3A) and DNMT3B are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. It was reported that conditional knockout of Dnmt3a in the uterus does not markedly affect endometrial function during embryo implantation, but the tissue-specific functions of Dnmt3b in the endometrium during embryo implantation remain poorly understood to investigate the role of Dnmt3b during peri-implantation period. Here, we generated Dnmt3b conditional knockout (Dnmt3bd/d) female mice using progesterone receptor-Cre mice and examined the role of Dnmt3b during embryo implantation. Dnmt3bd/d female mice exhibited compromised fertility, which was associated with defective decidualization, but not endometrial receptivity. Furthermore, results showed loss of Dnmt3b did not lead to altered genomic methylation patterns of the decidual endometrium during early pregnancy. Transcriptome sequencing analysis of uteri from day 6 pregnant mice identified phosphoglycerate kinase 1 (Pgk1) as one of the most variable genes in Dnmt3bd/d decidual endometrium. Potential roles of PGK1 in the decidualization process during early pregnancy were confirmed. Lastly, the compromised decidualization upon the downregulation of Dnmt3b could be reversed by overexpression of Pgk1. Collectively, our findings indicate that uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects.


Assuntos
Decídua , Útero , Animais , Feminino , Camundongos , Gravidez , Decídua/fisiologia , Metilação de DNA/genética , Implantação do Embrião/fisiologia , Endométrio/metabolismo
3.
Orv Hetil ; 163(46): 1823-1833, 2022 Nov 13.
Artigo em Húngaro | MEDLINE | ID: mdl-36373581

RESUMO

An essential component of successful conception and pregnancy is decidualization, which involves structural and functional transformation of the endometrium. The process involves structural changes in the uterine mucosa, transformation of spiral arterioles, numerical and functional adaptation of leukocytes in the endometrium and their subsequent migration, and functional and morphological changes in decidual stromal cells. As part of decidualization, trophoblast cells of embryonic origin perform a physiological invasion of maternal tissue to create the placenta. The success of the process is due to the special antigenicity of the trophoblast cells and the immune communication between the graft (fetus) and the host (mother) through hormones, cytokines and multiple receptorligand connections. Disorders of these processes are the basis of several diseases that threaten conception, implantation, and successful pregnancy, such as recurrent miscarriage, preeclampsia, intrauterine retardation, or preterm birth. In this article, we review the anatomical, immunological, and molecular basis of physiological decidualization to address common disorders in the clinical practice of obstetrics that are related to a dysfunctional decidualization.


Assuntos
Decídua , Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Humanos , Decídua/fisiologia , Implantação do Embrião/fisiologia , Endométrio/fisiologia , Trofoblastos , Células Estromais
4.
Proc Natl Acad Sci U S A ; 119(38): e2200252119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095212

RESUMO

In humans, the uterus undergoes a dramatic transformation to form an endometrial stroma-derived secretory tissue, termed decidua, during early pregnancy. The decidua secretes various factors that act in an autocrine/paracrine manner to promote stromal differentiation, facilitate maternal angiogenesis, and influence trophoblast differentiation and development, which are critical for the formation of a functional placenta. Here, we investigated the mechanisms by which decidual cells communicate with each other and with other cell types within the uterine milieu. We discovered that primary human endometrial stromal cells (HESCs) secrete extracellular vesicles (EVs) during decidualization and that this process is controlled by a conserved HIF2α-RAB27B pathway. Mass spectrometry revealed that the decidual EVs harbor a variety of protein cargo, including cell signaling molecules, growth modulators, metabolic regulators, and factors controlling endothelial cell expansion and remodeling. We tested the hypothesis that EVs secreted by the decidual cells mediate functional communications between various cell types within the uterus. We demonstrated that the internalization of EVs, specifically those carrying the glucose transporter 1 (GLUT1), promotes glucose uptake in recipient HESCs, supporting and advancing the decidualization program. Additionally, delivery of HESC-derived EVs into human endothelial cells stimulated their proliferation and led to enhanced vascular network formation. Strikingly, stromal EVs also promoted the differentiation of trophoblast stem cells into the extravillous trophoblast lineage. Collectively, these findings provide a deeper understanding of the pleiotropic roles played by EVs secreted by the decidual cells to ensure coordination of endometrial differentiation and angiogenesis with trophoblast function during the progressive phases of decidualization and placentation.


Assuntos
Decídua , Vesículas Extracelulares , Trofoblastos , Diferenciação Celular , Decídua/citologia , Decídua/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Vesículas Extracelulares/fisiologia , Feminino , Humanos , Neovascularização Fisiológica , Gravidez , Células Estromais/citologia , Células Estromais/fisiologia , Trofoblastos/citologia , Trofoblastos/fisiologia
5.
Biol Reprod ; 107(5): 1166-1176, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35947987

RESUMO

Human endometrial and decidual stromal cells are the same cells in different environments (nonpregnancy and pregnancy, respectively). Although some authors consider decidual stromal cells to arise solely from the differentiation of endometrial stromal cells, this is a debatable issue given that decidualization processes do not end with the formation of the decidua, as shown by the presence of stromal cells from both the endometrium and decidua in both undifferentiated (nondecidualized) and decidualized states. Furthermore, recent functional and transcriptomic results have shown that there are differences in the decidualization process of endometrial and decidual stromal cells, with the latter having a greater decidualization capacity than the former. These differences suggest that in the terminology and study of their characteristics, endometrial and decidual stromal cells should be clearly distinguished, as should their undifferentiated or decidualized status. There is, however, considerable confusion in the designation and identification of uterine stromal cells. This confusion may impede a judicious understanding of the functional processes in normal and pathological situations. In this article, we analyze the different terms used in the literature for different types of uterine stromal cells, and propose that a combination of differentiation status (undifferentiated, decidualized) and localization (endometrium, decidua) criteria should be used to arrive at a set of accurate, unambiguous terms. The cell identity of uterine stromal cells is also a debatable issue: phenotypic, functional, and transcriptomic studies in recent decades have related these cells to different established cells. We discuss the relevance of these associations in normal and pathological situations.


Assuntos
Decídua , Endométrio , Gravidez , Feminino , Humanos , Decídua/fisiologia , Células Estromais , Diferenciação Celular , Células Cultivadas
6.
Placenta ; 123: 46-53, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35552157

RESUMO

During the first trimester of pregnancy, cytotrophoblasts (CTBs) differentiate into extravillous trophoblasts (EVTs). EVTs migrate from villus to decidua, invade maternal spiral arteries (SAs) and more strikingly, they migrate against blood flow along the vessels and replace endothelial cells (ECs), completing SA remodeling. Studies have indicated that trophoblast cells are mechanosensitive. They assemble ECs, which can align in the direction of fluid flow. However, how they sense blood flow and transform mechanical stimulations into chemical signals remain largely unexplored. What factors trigger their motility? what are the potential and major factors that guide them to find their path and empower them to migrate against flow? To answer these intricate questions, this review provides some of the novel aspects and sheds new insights into clinical applications.


Assuntos
Decídua , Trofoblastos , Artérias , Decídua/fisiologia , Células Endoteliais , Feminino , Humanos , Gravidez , Primeiro Trimestre da Gravidez , Trofoblastos/fisiologia
7.
Mol Reprod Dev ; 89(5-6): 256-268, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35474595

RESUMO

Decidualization is an essential process for embryo implantation and maintenance of pregnancy, and abnormal decidualization contributed to several pregnancy disorders like a miscarriage. The objective of this study was to explore the regulation and function of CD55 in human decidualization. By immunohistochemical staining, it was found that CD55 expression was higher in first-trimester decidua than in the endometrium. In both primary endometrial stromal cells and immortalized cell line T-hESCs, CD55 was upregulated by induction of in vitro decidualization with medroxyprogesterone acetate (MPA) and 8-Br-cAMP. During decidualization in vitro, CD55 was stimulated by 8-Br-cAMP in a time- and concentration-dependent manner, which was reversed by a PKA inhibitor H89 and partially by an AKT activator SC79. Knocking down CD55 expression diminished the expression of decidualization markers prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1), accompanied by inhibition of Src, aberrant activation of ERK and decreased expression of several decidualization-related genes, including FOXO1, EGFR, and STAT3. Furthermore, the decidua of unexplained miscarriage women and the endometrium of unexplained infertile women both exhibited decreased CD55 expression. Collectively, these findings revealed that 8-Br-cAMP promotes CD55 expression via PKA activation and AKT dephosphorylation, and decreased CD55 impairs decidualization by inactivation of Src, aberrant activation of ERK pathway, and compromised expression of decidualization-related genes, indicating that CD55 deficiency may contribute to the pathogenesis of spontaneous miscarriage and infertility.


Assuntos
Aborto Espontâneo , Antígenos CD55 , Decídua , Infertilidade Feminina , Aborto Espontâneo/metabolismo , Antígenos CD55/metabolismo , Células Cultivadas , Decídua/fisiologia , Endométrio/fisiologia , Feminino , Humanos , Infertilidade Feminina/metabolismo , Sistema de Sinalização das MAP Quinases , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Estromais/metabolismo
8.
Biol Reprod ; 107(2): 529-545, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35357464

RESUMO

Uterine dysfunctions lead to fertility disorders and pregnancy complications. Normal uterine functions at pregnancy depend on crosstalk among multiple cell types in uterine microenvironments. Here, we performed the spatial transcriptomics and single-cell RNA-seq assays to determine local gene expression profiles at the embryo implantation site of the mouse uterus on pregnancy day 7.5 (D7.5). The spatial transcriptomic annotation identified 11 domains of distinct gene signatures, including a mesometrial myometrium, an anti-mesometrial myometrium, a mesometrial decidua enriched with natural killer cells, a vascular sinus zone for maternal vessel remodeling, a fetal-maternal interface, a primary decidual zone, a transition decidual zone, a secondary decidual zone, undifferentiated stroma, uterine glands, and the embryo. The scRNA-Seq identified 12 types of cells in the D7.5 uterus including three types of stromal fibroblasts with differentiated and undifferentiated markers, one cluster of epithelium including luminal and glandular epithelium, mesothelium, endothelia, pericytes, myelomonocytic cell, natural killer cells, and lymphocyte B. These single-cell RNA signatures were then utilized to deconvolute the cell-type compositions of each individual uterine microenvironment. Functional annotation assays on spatial transcriptomic data revealed uterine microenvironments with distinguished metabolic preferences, immune responses, and various cellular behaviors that are regulated by region-specific endocrine and paracrine signals. Global interactome among regions is also projected based on the spatial transcriptomic data. This study provides high-resolution transcriptome profiles with locality information at the embryo implantation site to facilitate further investigations on molecular mechanisms for normal pregnancy progression.


Assuntos
Transcriptoma , Útero , Animais , Decídua/fisiologia , Implantação do Embrião/genética , Epitélio , Feminino , Células Matadoras Naturais , Camundongos , Miométrio , Gravidez , Útero/metabolismo
10.
Biol Reprod ; 106(1): 155-172, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34591094

RESUMO

The decidua is a hallmark of reproduction in many placental mammals. Differentiation of decidual stromal cells is known to be induced by progesterone and the cyclic AMP/protein kinase A (cAMP/PKA) pathway. Several candidates have been identified as the physiological stimulus for adenylyl cyclase activation, but their relative importance remains unclear. To bypass this uncertainty, the standard approach for in vitro experiments uses membrane-permeable cAMP and progestin. We phylogenetically infer that prostaglandin E2 (PGE2) likely was the signal that ancestrally induced decidualization in conjunction with progesterone. This suggests that PGE2 and progestin should be able to activate the core gene regulatory network of decidual cells. To test this prediction, we performed a genome-wide study of gene expression in human endometrial fibroblasts decidualized with PGE2 and progestin. Comparison to a cAMP-based protocol revealed shared activation of core decidual genes and decreased induction of senescence-associated genes. Single-cell transcriptomics of PGE2-mediated decidualization revealed a distinct, early-activated state transitioning to a differentiated decidual state. PGE2-mediated decidualization was found to depend upon progestin-dependent induction of PGE2 receptor 2 (PTGER2) which in turn leads to PKA activation upon PGE2 stimulation. Progesterone-dependent induction of PTGER2 is absent in opossum, an outgroup taxon of placental mammals which is incapable of decidualization. Together, these findings suggest that the origin of decidualization involved the evolution of progesterone-dependent activation of the PGE2/PTGER2/PKA axis, facilitating entry into a PKA-dominant rather than AKT-dominant cellular state. We propose the use of PGE2 for in vitro decidualization as an alternative to 8-Br-cAMP.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Decídua/citologia , Dinoprostona/farmacologia , Linhagem Celular Transformada , Células Cultivadas , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Decídua/fisiologia , Endométrio/citologia , Endométrio/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Acetato de Medroxiprogesterona/farmacologia , Gravidez , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Análise de Sequência de RNA , Análise de Célula Única
11.
J Clin Invest ; 131(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34473650

RESUMO

Atrial natriuretic peptide (ANP) is an important hormone in cardiovascular biology. It is activated by the protease corin. In pregnancy, ANP and corin promote uterine spiral artery remodeling, but the underlying mechanism remains unknown. Here we report an ANP function in uterine decidualization and TNF-related apoptosis-inducing ligand-dependent (TRAIL-dependent) death in spiral arterial smooth muscle cells (SMCs) and endothelial cells (ECs). In ANP- or corin-deficient mice, uterine decidualization markers and TRAIL expression were decreased, whereas in cultured human endometrial stromal cells (HESCs), ANP increased decidualization and TRAIL expression. In uterine spiral arteries from pregnant wild-type mice, SMC and EC loss occurred sequentially before trophoblast invasion. In culture, TRAIL from decidualized HESCs induced apoptosis in uterine SMCs, but not in ECs with low TRAIL receptor expression. Subsequently, cyclophilin B was identified from apoptotic SMCs that upregulated endothelial TRAIL receptor and caused apoptosis in ECs. These results indicate that ANP promotes decidualization and TRAIL expression in endometrial stromal cells, contributing to sequential events in remodeling of spiral arteries, including SMC death and cyclophilin B release, which in turn induces TRAIL receptor expression and apoptosis in ECs.


Assuntos
Fator Natriurético Atrial/fisiologia , Decídua/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Útero/irrigação sanguínea , Remodelação Vascular/fisiologia , Animais , Células Cultivadas , Endométrio/citologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/fisiologia , Gravidez , Serina Endopeptidases/fisiologia
12.
Reproduction ; 162(6): 461-472, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34591784

RESUMO

As a multifunctional transcription factor, YY1 regulates the expression of many genes essential for early embryonic development. RTCB is an RNA ligase that plays a role in tRNA maturation and Xbp1 mRNA splicing. YY1 can bind in vitro to the response element in the proximal promoter of Rtcb and regulate Rtcb promoter activity. However, the in vivo regulation and whether these two genes are involved in the mother-fetal dialogue during early pregnancy remain unclear. In this study, we validated that YY1 bound in vivo to the proximal promoter of Rtcb in mouse uterus of early pregnancy. Moreover, via building a variety of animal models, our study suggested that both YY1 and RTCB might play a role in mouse uterus decidualization and embryo implantation during early pregnancy.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Implantação do Embrião , Fatores de Transcrição , Fator de Transcrição YY1/metabolismo , Animais , Decídua/fisiologia , Implantação do Embrião/fisiologia , Feminino , Camundongos , Gravidez , Splicing de RNA , Fatores de Transcrição/genética , Útero
13.
Exp Mol Med ; 53(9): 1307-1318, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497345

RESUMO

TAZ, as a crucial effector of Hippo pathway, is required for spermatogenesis and fertilization, but little is known regarding its physiological function in uterine decidualization. In this study, we showed that TAZ was localized in the decidua, where it promoted stromal cell proliferation followed by accelerated G1/S phase transition via Ccnd3 and Cdk4 and induced the expression or activity of stromal differentiation markers Prl8a2, Prl3c1 and ALP, indicating the importance of TAZ in decidualization. Knockdown of TAZ impeded HB-EGF induction of stromal cell proliferation and differentiation. Under oxidative stress, TAZ protected stromal differentiation against oxidative damage by reducing intracellular ROS and enhancing cellular antioxidant capacity dependent on the Nrf2/ARE/Foxo1 pathway. TAZ strengthened the transcriptional activity of Nrf2 which directly bound to the antioxidant response element (ARE) of Foxo1 promoter region. Additionally, silencing TAZ caused accumulation of intracellular ROS through heightening NOX activity whose blockade by APO reversed the disruption in stromal differentiation. Further analysis revealed that TAZ might restore mitochondrial function, as indicated by the increase in ATP level, mtDNA copy number and mitochondrial membrane potential with the reduction in mitochondrial superoxide. Additionally, TAZ modulated the activities of mitochondrial respiratory chain complexes I and III whose suppression by ROT and AA resulted in the inability of TAZ to defend against oxidative damage to stromal differentiation. Moreover, TAZ prevented stromal cell apoptosis by upregulating Bcl2 expression and inhibiting Casp3 activity and Bax expression. In summary, TAZ might mediate HB-EGF function in uterine decidualization through Ccnd3 and ameliorate oxidative damage to stromal cell differentiation via Nrf2/ARE/Foxo1 pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Elementos de Resposta Antioxidante , Decídua/fisiologia , Proteína Forkhead Box O1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Animais , Antioxidantes/metabolismo , Apoptose , Diferenciação Celular , Feminino , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica , Camundongos , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo/genética , Gravidez , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Células Estromais/metabolismo
14.
Elife ; 102021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34487490

RESUMO

Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterized endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by eliminating the emergence of senescent decidual cells. In co-culture experiments, accelerated decidualization resulted in entrapment of collapsed human blastocysts in a robust, static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings suggest that decidual senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure.


At the beginning of a human pregnancy, the embryo implants into the uterus lining, known as the endometrium. At this point, the endometrium transforms into a new tissue that helps the placenta to form. Problems in this transformation process are linked to pregnancy disorders, many of which can lead to implantation failure (the embryo fails to invade the endometrium altogether) or recurrent miscarriages (the embryo implants successfully, but the interface between the placenta and the endometrium subsequently breaks down). Studying the implantation of human embryos directly is difficult due to ethical and technical barriers, and animals do not perfectly mimic the human process, making it challenging to determine the causes of pregnancy disorders. However, it is likely that a form of cellular arrest called senescence, in which cells stop dividing but remain metabolically active, plays a role. Indeed, excessive senescence in the cells that make up the endometrium is associated with recurrent miscarriage, while a lack of senescence is associated with implantation failure. To study this process, Rawlings et al. developed a new laboratory model of the human endometrium by assembling two of the main cell types found in the tissue into a three-dimensional structure. When treated with hormones, these 'assembloids' successfully mimic the activity of genes in the cells of the endometrium during implantation. Rawlings et al. then exposed the assembloids to the drug dasatinib, which targets and eliminates senescent cells. This experiment showed that assembloids become very robust and static when devoid of senescent cells. Rawlings et al. then studied the interaction between embryos and assembloids using time-lapse imaging. In the absence of dasatinib treatment, cells in the assembloid migrated towards the embryo as it expanded, a process required for implantation. However, when senescent cells were eliminated using dasatinib, this movement of cells towards the embryo stopped, and the embryo failed to expand, in a situation that mimicks implantation failure. The assembloid model of the endometrium may help scientists to study endometrial defects in the lab and test potential treatments. Further work will include other endometrial cell types in the assembloids, and could help increase the reliability of the model. However, any drug treatments identified using this model will need further research into their safety and effectiveness before they can be offered to patients.


Assuntos
Senescência Celular , Implantação do Embrião/fisiologia , Endométrio/citologia , Células Estromais/citologia , Técnicas de Cocultura , Decídua/fisiologia , Feminino , Humanos , Organoides , Gravidez
15.
Endocrinology ; 162(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34402888

RESUMO

Recent studies have demonstrated that the formation of an implantation chamber composed of a uterine crypt, an implantation-competent blastocyst, and uterine glands is a critical step in blastocyst implantation in mice. Leukemia inhibitory factor (LIF) activates signal transducer and activator of transcription 3 (STAT3) precursors via uterine LIF receptors (LIFRs), allowing successful blastocyst implantation. Our recent study revealed that the role of epithelial STAT3 is different from that of stromal STAT3. However, both are essential for blastocyst attachment, suggesting the different roles of epithelial and stromal LIFR in blastocyst implantation. However, how epithelial and stromal LIFR regulate the blastocyst implantation process remains unclear. To investigate the roles of LIFR in the uterine epithelium and stroma, we generated Lifr-floxed/lactoferrin (Ltf)-iCre (Lifr eKO) and Lifr-floxed/antimüllerian hormone receptor type 2 (Amhr2)-Cre (Lifr sKO) mice with deleted epithelial and stromal LIFR, respectively. Surprisingly, fertility and blastocyst implantation in the Lifr sKO mice were normal despite stromal STAT3 inactivation. In contrast, blastocyst attachment failed, and no implantation chambers were formed in the Lifr eKO mice with epithelial inactivation of STAT3. In addition, normal responsiveness to ovarian hormones was observed in the peri-implantation uteri of the Lifr eKO mice. These results indicate that the epithelial LIFR-STAT3 pathway initiates the formation of implantation chambers, leading to complete blastocyst attachment, and that stromal STAT3 regulates blastocyst attachment without stromal LIFR control. Thus, uterine epithelial LIFR is critical to implantation chamber formation and blastocyst attachment.


Assuntos
Implantação do Embrião/genética , Epitélio/metabolismo , Receptores de OSM-LIF/fisiologia , Útero/metabolismo , Animais , Blastocisto/fisiologia , Decídua/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Receptores de OSM-LIF/genética , Receptores de OSM-LIF/metabolismo , Útero/citologia
16.
Reprod Biol Endocrinol ; 19(1): 96, 2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34176510

RESUMO

BACKGROUND: Successful human embryo implantation requires the differentiation of endometrial stromal cells (ESCs) into decidual cells during a process called decidualization. ESCs express specific markers of decidualization, including prolactin, insulin-like growth factor-binding protein-1 (IGFBP-1), and connexin-43. Decidual cells also control of trophoblast invasion by secreting various factors, such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases. Preimplantation factor (PIF) is a recently identified, embryo-derived peptide with activities at the fetal-maternal interface. It creates a favorable pro-inflammatory environment in human endometrium and directly controls placental development by increasing the human trophoblastic cells' ability to invade the endometrium. We hypothesized that PIF's effects on the endometrium counteract its pro-invasive effects. METHODS: We tested sPIF effect on the expression of three decidualization markers by RT-qPCR and/or immunochemiluminescence assay. We examined sPIF effect on human ESC migration by performing an in vitro wound healing assay. We analyzed sPIF effect on endometrial control of human trophoblast invasion by performing a zymography and an invasion assay. RESULTS: Firstly, we found that a synthetic analog of PIF (sPIF) significantly upregulates the mRNA expression of IGFBP-1 and connexin-43, and prolactin secretion in ESCs - suggesting a pro-differentiation effect. Secondly, we showed that the HTR-8/SVneo trophoblastic cell line's invasive ability was low in the presence of conditioned media from ESCs cultured with sPIF. Thirdly, this PIF's anti-invasive action was associated with a specifically decrease in MMP-9 activity. CONCLUSION: Taken as a whole, our results suggest that PIF accentuates the decidualization process and the production of endometrial factors that limit trophoblast invasion. By controlling both trophoblast and endometrial cells, PIF therefore appears to be a pivotal player in the human embryo implantation process.


Assuntos
Decídua/citologia , Decídua/efeitos dos fármacos , Endométrio/citologia , Endométrio/efeitos dos fármacos , Proteínas da Gravidez/administração & dosagem , Trofoblastos/efeitos dos fármacos , Adulto , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Decídua/fisiologia , Endométrio/fisiologia , Feminino , Humanos , Células Estromais/efeitos dos fármacos , Células Estromais/fisiologia , Trofoblastos/fisiologia
17.
Reproduction ; 161(4): 477-487, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33606664

RESUMO

Recurrent pregnancy loss (RPL) is one of the most common complications of early pregnancy associated in most cases with local or systemic immune abnormalities such as the diminished proportion of regulatory T cells (Tregs). Mesenchymal stem cells (MSCs) have been shown to modulate the immune responses by de novo induction and expansion of Tregs. In this study, we analyzed the molecular and cellular mechanisms involved in Treg-associated pregnancy protection following MSCs administration in an abortion-prone mouse mating. In a case-control study, syngeneic abdominal fat-derived MSCs were administered intraperitoneally (i.p) to the DBA/2-mated CBA/J female mice on day 4.5 of pregnancy. Abortion rate, Tregs proportion in spleen and inguinal lymph nodes, Ho1, Foxp3, Pd1 and Ctla4 genes expression at the feto-maternal interface were then measured on day 13.5 of pregnancy using flow cytometry and quantitative RT-PCR, respectively. The abortion rate in MSCs-treated mice reduced significantly and normalized to the level observed in normal pregnant animals. We demonstrated a significant induction of Tregs in inguinal lymph nodes but not in the spleen following MSCs administration. Administration of MSCs remarkably upregulated the expression of Ho1, Foxp3, Pd1 and Ctla4 genes in both placenta and decidua. Here, we show that MSCs therapy could protect the fetus in the abortion-prone mice through Tregs expansion and upregulation of Treg-related genes. These events could establish an immune-privileged microenvironment, which participates in the regulation of detrimental maternal immune responses against the semi-allogeneic fetus.


Assuntos
Aborto Espontâneo/patologia , Decídua/fisiologia , Troca Materno-Fetal , Células-Tronco Mesenquimais/fisiologia , Linfócitos T Reguladores/imunologia , Aborto Induzido , Aborto Espontâneo/imunologia , Aborto Espontâneo/metabolismo , Animais , Citocinas/metabolismo , Decídua/citologia , Feminino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Gravidez , Linfócitos T Reguladores/citologia
18.
Biol Reprod ; 104(3): 539-547, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33284968

RESUMO

The endometrium undergoes a pregnancy-delivery-repair cycle multiple times during the reproductive lifespan in females. Decidualization is one of the critical events for the success of this essential process. We have previously reported that Notch1 is essential for artificial decidualization in mice. However, in a natural pregnancy, the deletion of Notch1 (PgrCre/+Notch1f/f, or Notch1d/d) only affects female fertility in the first 30 days of a 6-month fertility test, but not the later stages. In the present study, we undertook a closer evaluation at the first pregnancy of these mice to attempt to understand this puzzling phenomenon. We observed a large number of pregnancy losses in Notch1d/d mice in their first pregnancy, which led to the subfertility observed in the first 30 days of the fertility test. We then demonstrated that the initial pregnancy loss is a consequence of impaired decidualization. Furthermore, we identified a group of genes that contribute to Notch1 regulated decidualization in a natural pregnancy. Gene ontogeny analysis showed that these differentially expressed genes in the natural pregnancy are involved in cell-cell and cell-matrix interactions, different from genes that have been previously identified from the artificial decidualization model, which contribute to cell proliferation and apoptosis. In summary, we determined that Notch1 is essential for normal decidualization in the mouse uterus only in the first pregnancy but not in subsequent ones.


Assuntos
Decídua/fisiologia , Regulação da Expressão Gênica/fisiologia , Prenhez , Receptor Notch1/metabolismo , Aborto Animal/genética , Animais , Proliferação de Células , Implantação do Embrião/genética , Feminino , Camundongos , Camundongos Knockout , Gravidez , Prenhez/genética , Prenhez/metabolismo , Receptor Notch1/genética , Transdução de Sinais , Transcriptoma
19.
Reprod Biol Endocrinol ; 18(1): 117, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33218355

RESUMO

BACKGROUND: Solute carrier family 2 member 1 (SLC2A1; previously known as glucose transporter 1), is the most abundant glucose transporter in human endometrium and is up-regulated during decidualization, whereas high insulin may have a negative impact on this process. The present study aimed to investigate the effect of insulin on the expression of SLC2A1 and glucose uptake in decidualizing human endometrial stromal cells. METHODS: We induced in vitro decidualization of endometrial stromal cells obtained from regularly menstruating healthy non-obese women. The cells were treated with increasing concentrations of insulin, and the involvement of the transcription factor forkhead box O1 (FOXO1) was evaluated using a FOXO1 inhibitor. SLC2A1 mRNA levels were measured by Real-Time PCR and protein levels were evaluated by immunocytochemistry. Glucose uptake was estimated by an assay quantifying the cellular uptake of radioactive glucose. One-way ANOVA, Dunnett's multiple comparisons test and paired t-test were used to determine the statistical significance of the results. RESULTS: We found that insulin dose-dependently decreased SLC2A1 mRNA levels and decreased protein levels of SLC2A1 in decidualizing human endometrial stromal cells. Transcriptional inactivation of FOXO1 seems to explain at least partly the down-regulation of SLC2A1 by insulin. Glucose uptake increased upon decidualization, whereas insulin treatment resulted in a slight inhibition of the glucose uptake, although not significant for all insulin concentrations. CONCLUSIONS: These results indicate an impairment of decidualization by high concentrations of insulin. Future studies will determine the clinical significance of our results for endometrial function and decidualization in women with insulin resistance and hyperinsulinemia.


Assuntos
Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Glucose/metabolismo , Insulina/farmacologia , Células Estromais/efeitos dos fármacos , Adulto , Células Cultivadas , Decídua/fisiologia , Regulação para Baixo/efeitos dos fármacos , Endométrio/citologia , Feminino , Glucose/farmacocinética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Imuno-Histoquímica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo , Adulto Jovem
20.
Front Immunol ; 11: 1571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973738

RESUMO

Decidualization is a process that involves phenotypic and functional changes of endometrial stromal cells to sustain endometrial receptivity and the participation of immunoregulatory factors to maintain immune homeostasis. In this context, tolerogenic dendritic cells (DCs) can induce regulatory T cells, which are essential to manage the pro- to anti-inflammatory transition during embryo implantation. Recently, Myeloid Regulatory Cells (MRCs) were proposed as immunosuppressants and tolerance-inducer cells, including the DC-10 subset. This novel and distinctive subset has the ability to produce IL-10 and to induce type 1 regulatory T cells (Tr1) through an HLA-G pathway. Here we focus on the impact of the decidualization process in conditioning peripheral monocytes to MRCs and the DC-10 subset, and their ability to induce regulatory T cells. An in vitro model of decidualization with the human endometrial stromal cell line (HESC), decidualized by medroxyprogesterone and dibutyryl-cAMP was used. Monocytes isolated from peripheral blood mononuclear cells from healthy women were cultured with rhGM-CSF + rhIL-4 and then, the effect of conditioned media from decidualized (Dec-CM) and non-decidualized cells (Non-dec-CM) was tested on monocyte cultures. We found that Dec-CM inhibited the differentiation to the CD1a+CD14- immature DC profile in a concentration-dependent manner. Dec-CM also significantly increased the frequency of CD83+CD86low and HLA-DR+ cells in the monocyte-derived culture. These markers, associated with the increased production of IL-10, are consistent with a MRCs tolerogenic profile. Interestingly, Dec-CM treatment displayed a higher expression of the characteristic markers of the tolerogenic DC-10 subset, HLA-G and ILT2/CD85j; while this modulation was not observed in cultures treated with Non-dec-CM. Moreover, when monocyte cultures with Dec-CM were challenged with LPS, they sustained a higher IL-10 production and prevented the increase of CD83, CD86, IL-12p70, and TNF-α expression. Finally, the DC-10 subset was able to induce a CD4+HLA-G+ regulatory T cells subset. These results suggest that the decidualization process might induce different subsets of MRCs, like DC-10, able to induce regulatory T cells as a novel CD4+HLA-G+ subset which might play an immunoregulatory role in embryo implantation.


Assuntos
Decídua/fisiologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Tolerância Imunológica , Interleucina-10/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Biomarcadores , Diferenciação Celular , Linhagem Celular , Células Dendríticas/citologia , Endocitose/imunologia , Endométrio/citologia , Endométrio/fisiologia , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Lipopolissacarídeos/imunologia , Teste de Cultura Mista de Linfócitos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...